I am an AI Engineer with a strong background in computer systems, artificial intelligence, control, and electronics. I have obtained a Master of Engineering degree in Control and Automation using AI, as well as a Master of AI Engineering, and have been recognized for my research efforts with the best master research award from IEEE Malaysia. Throughout my career, I have gained hands-on experience in solving real-life industrial problems using IoT and AI-controlled robots, including the development of a UAV with an autopilot controller and a cutting-edge IoT and computer vision device for security purposes. In addition, I have focused on applying AI in the fields of renewable energy, healthcare, and natural language processing, and have the ability to take a project from research to deployment, creating AI-based solutions and products for practical, real-world situations.
Download my resumé
Artificial Intelligence Engineer (Master Program) (4.0/4.0), 2020
IBM
MEng in Mechatronics, Robotics, and Automation Using AI (3.9/4.0), 2019
Universiti Teknologi Malaysia
BE in Mechatronics, Robotics, and Automation (3.6/4.0), 2018
Universiti Teknologi Malaysia
Python
ML & DL
Statistics
Research
Computer Vision
NLP
Drones
IoT
Arduino/Raspberry Pi
Cloud Computing
Communication
Public speaking
Creativity
Teamwork
Leadership
Time management
Responsibilities include:
Responsibilities include:
Rivers are the main sources of freshwater supply for the world population. However, many economic activities contribute to river water pollution. River water quality can be monitored using various parameters, such as the pH level, dissolved oxygen, total suspended solids, and the chemical properties. Analyzing the trend and pattern of these parameters enables the prediction of the water quality so that proactive measures can be made by relevant authorities to prevent water pollution and predict the effectiveness of water restoration measures. Machine learning regression algorithms can be applied for this purpose. Here, eight machine learning regression techniques, including decision tree regression, linear regression, ridge, Lasso, support vector regression, random forest regression, extra tree regression, and the artificial neural network, are applied for the purpose of water quality index prediction. Historical data from Indian rivers are adopted for this study. The data refer to six water parameters. Twelve other features are then derived from the original six parameters. The performances of the models using different algorithms and sets of features are compared. The derived water quality rating scale features are identified to contribute toward the development of better regression models, while the linear regression and ridge offer the best performance. The best mean square error achieved is 0 and the correlation coefficient is 1.
Recent period of pandemic has brought person identification even with occluded face image a great importance with increased number of mask usage. This paper aims to recognize the occlusion of one of four types in face images. Various transfer learning methods were tested, and the results show that MobileNet V2 with Gated Recurrent Unit(GRU) performs better than any other Transfer Learning methods, with a perfect accuracy of 99% in classification of images as with or without occlusion and if with occlusion, then the type of occlusion. In parallel, identifying the Region of interest from the device captured image is done. This extracted Region of interest is utilised in face identification. Such a face identification process is done using the ResNet model with its Caffe implementation. To reduce the execution time, after the face occlusion type was recognized the person was searched to confirm their face image in the registered database. The face label of the person obtained from both simultaneous processes was verified for their matching score. If the matching score was above 90, the recognized label of the person was logged into a file with their name, type of mask, date, and time of recognition. MobileNetV2 is a lightweight framework which can also be used in embedded or IoT devices to perform real time detection and identification in suspicious areas of investigations using CCTV footages. When MobileNetV2 was combined with GRU, a reliable accuracy was obtained. The data provided in the paper belong to two categories, being either collected from Google Images for occlusion classification, face recognition, and facial landmarks, or collected in fieldwork. The motive behind this research is to identify and log person details which could serve surveillance activities in society-based e-governance.
Smart home is a concept that aims to maximize the comfort of occupant while consuming energy as low as possible. The comfort and energy consumption are contradicting factors in smart homes. Enhancing comfort often requires considerable energy. On the other hand, minimizing energy may result in less comfort to the residence. Thus, maximizing comfort while minimizing energy consumption is a challenging process. In this paper, bat algorithm (BA) based solution is proposed to tackle this problem. Three main parameters that influence the occupant’s comfort, namely, temperature, illumination, and indoor air quality, are considered. The algorithm optimizes towards the best set of values for the three parameters. In this work, exponentially increasing inertia weight is introduced to BA for performance improvement. A secondary dataset consisting of 48 environmental values is optimized using the proposed algorithm. The performance of BA with exponential inertia weight is proven as significantly better than the original BA and other variants of inertia weight; random, linearly decreasing, and nonlinearly decreasing. Moreover, the comfort level achieved by BA with exponential inertia weight is found to be better than previously reported works using firefly algorithm, genetic algorithm, ant colony optimization, and artificial bee colony algorithm. The superior performance is achieved due to better convergence behaviour. Summarily, applying BA with exponential inertia weight is a novel contribution that is essential for providing smart home system a solution that ensures optimum comfort at minimal energy consumption.